Crystallization and preliminary X-ray diffraction study of two complexes of a TAXI-type xylanase inhibitor with glycoside hydrolase family 11 xylanases from Aspergillus niger and Bacillus subtilis.
نویسندگان
چکیده
Endo-beta-1,4-xylanases hydrolyze arabinoxylan, a major constituent of cereal cell walls, and are nowadays widely used in biotechnological processes. Purified complexes of family 11 xylanases from Aspergillus niger and Bacillus subtilis with TAXI I, a TAXI-type xylanase inhibitor from Triticum aestivum L., were prepared. In both cases the complex was crystallized using the hanging-drop vapour-diffusion method. The needle-like crystals of TAXI I in complex with A. niger xylanase belong to the trigonal space group P3(1) or P3(2), with unit-cell parameters a = b = 88.43, c = 128.99 A, and diffract to 1.8 A resolution. TAXI I in complex with B. subtilis xylanase crystallizes in the monoclinic space group C2, with a = 107.89, b = 95.33, c = 66.31 A, beta = 122.24 degrees. Complete data sets were collected for both crystal types using synchrotron radiation.
منابع مشابه
Functional importance of Asp37 from a family 11 xylanase in the binding to two proteinaceous xylanase inhibitors from wheat.
Aspergillus niger xylanase is a target enzyme of the two wheat proteinaceous inhibitors, XIP-I and TAXI-I. We previously suggested that the xylanase "thumb" region was XIP-I binding site. Here, we expressed the Asp37Ala mutant in Pichia pastoris and showed that the mutation abolished the enzyme capacity to interact with both inhibitors, suggesting a direct contact at the active site. The mutant...
متن کاملCrystallization and preliminary X-ray diffraction analysis of Xyn30D from Paenibacillus barcinonensis.
Xyn30D, a new member of a recently identified group of xylanases, has been purified and crystallized. Xyn30D is a bimodular enzyme composed of an N-terminal catalytic domain belonging to glycoside hydrolase family 30 (GH30) and a C-terminal family 35 carbohydrate-binding domain (CBM35) able to bind xylans and glucuronic acid. Xyn30D shares the characteristic endo mode of action described for GH...
متن کاملThe dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases.
The xylanase inhibitor protein I (XIP-I) from wheat Triticum aestivum is the prototype of a novel class of cereal protein inhibitors that inhibit fungal xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). The crystal structures of XIP-I in complex with Aspergillus nidulans (GH10) and Penicillium funiculosum (GH11) xylanases have been solved at 1.7 and 2.5 A resolution, ...
متن کاملNew TAXI-type xylanase inhibitor genes are inducible by pathogens and wounding in hexaploid wheat.
TAXI-I (Triticum aestivum xylanase inhibitor I) is a wheat grain protein that inhibits arabinoxylan fragmentation by microbial endo-beta-1,4-xylanases used in the food industry. Although TAXI was speculated to be involved in counterattack against pathogens, there is actually no evidence to support this hypothesis. We have now demonstrated the presence of TAXI family members with isolation of tw...
متن کاملExpression, purification, crystallization and preliminary X-ray diffraction analysis of Aspergillus terreus endo-β-1,4-glucanase from glycoside hydrolase family 12.
Endoglucanases are important enzymes that are involved in the modification and degradation of cellulose. Filamentous fungi such as Aspergillus terreus are effective biomass degraders in nature owing to their capacity to produce an enzymatic arsenal of glycoside hydrolases, including endoglucanase from glycoside hydrolase family 12 (GH12). The A. terreus GH12 endoglucanase was cloned and overexp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 60 Pt 3 شماره
صفحات -
تاریخ انتشار 2004